Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Front Immunol ; 15: 1374088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725999

RESUMO

Background: In vitro studies often use two-dimensional (2D) monolayers, but 3D cell organization, such as in spheroids, better mimics the complexity of solid tumors. To metastasize, cancer cells undergo the process of epithelial-to-mesenchymal transition (EMT) to become more invasive and pro-angiogenic, with expression of both epithelial and mesenchymal markers. Aims: We asked whether EMMPRIN/CD147 contributes to the formation of the 3D spheroid structure, and whether spheroids, which are often used to study proliferation and drug resistance, could better model the EMT process and the metastatic properties of cells, and improve our understanding of the role of EMMPRIN in them. Methods: We used the parental mouse CT26 colon carcinoma (CT26-WT) cells, and infected them with a lentivirus vector to knock down EMMPRIN expression (CT26-KD cells), or with an empty lentivirus vector (CT26-NC) that served as a negative control. In some cases, we repeated the experiments with the 4T1 or LLC cell lines. We compared the magnitude of change between CT26-KD and CT26-WT/NC cells in different metastatic properties in cells seeded as monolayers or as spheroids formed by the scaffold-free liquid overlay method. Results: We show that reduced EMMPRIN expression changed the morphology of cells and their spatial organization in both 2D and 3D models. The 3D models more clearly demonstrated how reduced EMMPRIN expression inhibited proliferation and the angiogenic potential, while it enhanced drug resistance, invasiveness, and EMT status, and moreover it enhanced cell dormancy and prevented CT26-KD cells from forming metastatic-like lesions when seeded on basement membrane extract (BME). Most interestingly, this approach enabled us to identify that EMMPRIN and miR-146a-5p form a negative feedback loop, thus identifying a key mechanism for EMMPRIN activities. These results underline EMMPRIN role as a gatekeeper that prevents dormancy, and suggest that EMMPRIN links EMT characteristics to the process of spheroid formation. Conclusions: Thus, 3D models can help identify mechanisms by which EMMPRIN facilitates tumor and metastasis progression, which might render EMMPRIN as a promising target for anti-metastatic tumor therapy.


Assuntos
Basigina , Neoplasias do Colo , Transição Epitelial-Mesenquimal , Esferoides Celulares , Basigina/metabolismo , Basigina/genética , Esferoides Celulares/metabolismo , Animais , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica
2.
Mol Divers ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587771

RESUMO

Cluster of differentiation 147 (CD147) is an attractive target for anticancer therapy since it is pivotal in developing and progressing several of malignant tumors in the context of its high expression levels. Although anti-CD147 antibodies by different laboratories are designed for the Ig-like domains of CD147, there is a demand to provide priority among these anti-CD147 antibodies for developing of therapeutic anti-CD147 antibody before experimental validations. This study uses molecular docking and dynamic simulation techniques to compare the binding modes and affinities of nine antibody models against the Ig-like domains of CD147. After obtaining the model antibodies by homology modeling via Robetta, we predicted the CDRs of nine antibodies and the epitopes of CD147 to reach more accurate results for antigen affinity in molecular docking. Next, from HADDOCK 2.4., we meticulously handpicked the most superior model clusters (Z-Score: - 2.5 to - 1.2) and identified that meplazumab had higher affinities according to the success rate as the percentage of a scoring scale. We achieved stable simulations of CD147-antibody interaction. Our outcomes hold hypothetical importance for further experimental cancer research on the design and development of the relevant model antibodies.

4.
Biomedicines ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672062

RESUMO

Vascular complications in Type 2 diabetes mellitus (T2DM) patients increase morbidity and mortality. In T2DM, angiogenesis is impaired and can be enhanced or reduced in different tissues ("angiogenic paradox"). The present study aimed to delineate differences between macrovascular and microvascular endothelial cells that might explain this paradox. In a monoculture system of human macrovascular (EaHy926) or microvascular (HMEC-1) endothelial cell lines and a monocytic cell line (U937), high glucose concentrations (25 mmole/L) increased the secretion of the pro-angiogenic factors CD147/EMMPRIN, VEGF, and MMP-9 from both endothelial cells, but not from monocytes. Co-cultures of EaHy926/HMEC-1 with U937 enhanced EMMPRIN and MMP-9 secretion, even in low glucose concentrations (5.5 mmole/L), while in high glucose HMEC-1 co-cultures enhanced all three factors. EMMPRIN mediated these effects, as the addition of anti-EMMPRIN antibody decreased VEGF and MMP-9 secretion, and inhibited the angiogenic potential assessed through the wound assay. Thus, the minor differences between the macrovascular and microvascular endothelial cells cannot explain the angiogenic paradox. Metformin, a widely used drug for the treatment of T2DM, inhibited EMMPRIN, VEGF, and MMP-9 secretion in high glucose concentration, and the AMPK inhibitor dorsomorphin enhanced it. Thus, AMPK regulates EMMPRIN, a key factor in diabetic angiogenesis, suggesting that targeting EMMPRIN may help in the treatment of diabetic vascular complications.

5.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38604775

RESUMO

A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.


Assuntos
Astrócitos , Precondicionamento Isquêmico , Ácido Láctico , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos , Receptores Purinérgicos P2X7 , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Precondicionamento Isquêmico/métodos , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Isquemia Encefálica/metabolismo , Simportadores/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Camundongos , Células Cultivadas , Encéfalo/metabolismo , Camundongos Knockout
6.
J Ethnopharmacol ; 327: 118042, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38493907

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The cluster of differentiation 147 (CD147) is identified as the signaling protein relevant importantly in various cancers, inflammations, and coronavirus disease 2019 (COVID-19) via interacting with extracellular cyclophilin A (CypA). The reduction of CD147 levels inhibits the progression of CD147-associated diseases. Thai traditional medicines (TTMs): Keaw-hom (KH), Um-ma-ruek-ka-wa-tee (UM), Chan-ta-lee-la (CT), and Ha-rak (HR) have been used as anti-pyretic and anti-respiratory syndromes caused from various conditions including cancers, inflammations, and infections. Thus, these medicines would play a crucial role in the reduction of CD147 levels. AIM OF THE STUDY: This article aimed to investigate the effects of KH, UM, CT, and HR for reducing the CD147 levels through in vitro study. Additionally, in silico study was employed to screen the active compounds reflexing the reduction of CD147 levels. MATERIALS AND METHODS: The immunofluorescent technique was used to evaluate the reduction of CD147 levels in human lung epithelial cells (BEAS-2B) stimulated with CypA for eight extracts of KH, UM, CT, and HR obtained from water decoction (D) and 70% ethanol maceration (M) including, KHD, UMD, CTD, HRD, KHM, UMM, CTM, and HRM. RESULTS: UM extracts showed the most efficiency for reduction of CD147 levels in the cytoplasm and perinuclear of BEAS-2B cells stimulated with CypA. Phenolic compounds composing polyphenols, polyphenol sugars, and flavonoids were identified as the major chemical components of UMD and UMM. Further, molecular docking calculations identified polyphenol sugars as CypA inhibitors. CONCLUSIONS: UMD and UMM are potential for reduction of CD147 levels which provide a useful information for further development of UM as potential therapeutic candidates for CD147-associated diseases such as cancers, inflammations, and COVID-19.


Assuntos
COVID-19 , Neoplasias , Humanos , Basigina/metabolismo , Medicina Tradicional Tailandesa , Simulação de Acoplamento Molecular , Ciclofilina A/química , Ciclofilina A/metabolismo , Ciclofilina A/farmacologia , Inflamação , Pulmão/metabolismo , Polifenóis , Açúcares
7.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474396

RESUMO

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Assuntos
COVID-19 , Trombose , Humanos , COVID-19/patologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/metabolismo , Hibridização in Situ Fluorescente , Peptidil Dipeptidase A/metabolismo , Pulmão/metabolismo , Trombose/patologia , Endotélio/metabolismo , Homeostase
8.
Front Mol Biosci ; 11: 1356780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449696

RESUMO

Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.

9.
Genes (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540417

RESUMO

AIM: Cutaneous T-cell lymphomas (CTCL) can be described as chronic skin inflammation lesions with the content of malignant T cells and they are considered to be T-cell-mediated skin diseases. CD147 is recognized as a 58-kDa cell surface glycoprotein of the immunoglobulin superfamily; it can induce the synthesis of MMPs (matrix metalloproteinases) on the surface of tumor cells where it was originally identified. It can also function in adjacent tumor fibroblasts using CD147-CD147 interactions. The polymorphism rs8259 T/A is situated in the untranslated region (3'UTR) of the CD147 gene. HLA DRB1*1501 takes part in the process of presentation and recognition of different antigens to T cells. It can be expressed by antigen-presenting cells-macrophages, dendritic cells, and B cells. The aim of the study is to test genotype-phenotype associations of both polymorphisms including therapy in a large cohort of CTCL patients. MATERIALS AND METHODS: A final total of 104 CTCL patients were enrolled in the study. For the first remission at the clinic department, they were treated by means of local skin-directed therapy, phototherapy, and systemic therapy. Genomic DNA was isolated from peripheral blood leukocytes. A standard technique using proteinase K was applied. The polymorphisms rs8259 T/A (CD147 gene) and rs3135388 (HLA DRB1*1501) were detected through standard PCR-restriction fragment length polymorphism methods. RESULTS: The severity of the disease (patients with parapsoriasis, stages IA and IB, vs patients with stages IIB, IIIA, and IIIB) was associated with the CD147 genotype: the AA variant was 3.38 times more frequent in more severe cases, which reflects the decision on systemic therapy (p = 0.02, specificity 0.965). The AA genotype in the CD147 polymorphism was 12 times more frequent in patients who underwent systemic therapy of CTCL compared to those not treated with this therapy (p = 0.009, specificity 0.976). The same genotype was also associated with radiotherapy-it was observed 14 times more frequently in patients treated with radiotherapy (p = 0.009, specificity 0.959). In patients treated with interferon α therapy, the AA genotype was observed to be 5.85 times more frequent compared to the patients not treated with interferon therapy (p = 0.03, specificity 0.963). The HLA DRB1*1501 polymorphism was associated with local skin-directed therapy of CTCL. The CC genotype of the polymorphism was observed to be 3.57 times more frequent in patients treated with local therapy (p = 0.008, specificity 0.948). When both polymorphisms had been calculated together, even better results were obtained: the AACC double genotype was 11 times more frequent in patients with severe CTCL (p = 0.009, specificity 0.977). The TACT double genotype was associated with local skin-directed therapy (0.09 times lower frequency, p = 0.007, sensitivity 0.982). The AACC genotype was 8.9 times more frequent in patients treated by means of systemic therapy (p = 0.02, specificity 0.976) and as many as 18.8 times more frequent in patients treated with radiotherapy (p = 0.005, specificity 0.969). Thus, the AACC double genotype of CD147 and DRB1*1501 polymorphisms seems to be a clinically highly specific marker of severity, systemic therapy and radiotherapy of patients with T-cell lymphoma. CONCLUSION: Although genotyping results were not known during the treatment decision and could not modify it, the clinical decision on severity and therapy reflected some aspects of the genetic background of this complicated T-cell-associated disease very well.


Assuntos
Linfoma Cutâneo de Células T , Linfoma de Células T , Neoplasias Cutâneas , Humanos , Cadeias HLA-DRB1/genética , Marcadores Genéticos , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética
10.
Front Immunol ; 15: 1319939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318187

RESUMO

During progression of rheumatoid arthritis (RA), angiogenesis provides oxygen and nutrients for the cells' increased metabolic demands and number. To turn on angiogenesis, pro-angiogenic factors must outweigh anti-angiogenic factors. We have previously shown that CD147/extracellular matrix metalloproteinase inducer (EMMPRIN) can induce the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) in a co-culture of the human HT1080 fibrosarcoma and U937 monocytic-like cell lines. However, whether CD147 influences anti-angiogenic factors was not known. We now show that relative to single cultures, the co-culture of these cells not only enhanced pro-angiogenic factors but also decreased the anti-angiogenic factors endostatin and thrombospondin-1 (Tsp-1), generally increasing the angiogenic potential as measured by a wound assay. Using anti-CD147 antibody, CD147 small interfering RNA (siRNA), and recombinant CD147, we demonstrate that CD147 hormetically regulates the generation of endostatin but has no effect on Tsp-1. Since endostatin is cleaved from collagen XVIII (Col18A), we applied different protease inhibitors and established that MMP-9 and proteasome 20S, but not cathepsins, are responsible for endostatin generation. MMP-9 and proteasome 20S collaborate to synergistically enhance endostatin generation, and in a non-cellular system, CD147 enhanced MMP-9 activity and hormetically regulated proteasome 20S activity. Serum samples obtained from RA patients and healthy controls mostly corroborated these findings, indicating clinical relevance. Cumulatively, these findings suggest that secreted CD147 mediates a possibly allosteric effect on MMP-9 and proteasome 20S activities and can serve as a switch that turns angiogenesis on or off, depending on its ambient concentrations in the microenvironment.


Assuntos
Artrite Reumatoide , Basigina , Humanos , Artrite Reumatoide/metabolismo , Basigina/genética , Endostatinas , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Complexo de Endopeptidases do Proteassoma , Trombospondina 1 , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Nanomedicine ; 19: 1451-1467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371456

RESUMO

Background: Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods: EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results: The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion: Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.


Assuntos
Isquemia Encefálica , Vesículas Extracelulares , AVC Isquêmico , Ratos , Animais , Barreira Hematoencefálica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Caveolina 1/metabolismo , Ocludina/metabolismo , Células Endoteliais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Infarto da Artéria Cerebral Média , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Vesículas Extracelulares/metabolismo
12.
Cureus ; 16(1): e52265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352102

RESUMO

INTRODUCTION: The aim of this study was to detect the possible endothelial expression of embryonic-type cancer stem cells (CSC) marker SOX2 and the stemness-type CSC marker CD147 in oral potential malignant disorders (OPMDs), oral leukoplakia (OL) in particular, and oral squamous cell carcinoma (OSCC). METHODS: This study focuses on the immunohistochemical pattern of expression of CSC protein-biomarkers SOX2 and CD147 in paraffin-embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to normal oral mucosa. RESULTS: The protein biomarker SOX2 was expressed in the endothelial cells, but without establishing any statistically significant correlation among OSCC, OL, and normal tissue specimens. However, SOX endothelial staining was noticed in 7/30 (23.3%) cases of OL (one non-dysplastic, one mildly dysplastic, one moderately dysplastic, and four severely dysplastic cases) and 5/21 (23.8%) cases of OSCC (two well-differentiated, one moderately differentiated, and two poorly differentiated cases). Although CD147 is expressed in normal oral epithelium, OL, and OSCC neoplastic cells, its vascular-endothelial expression was noticed in only 2/5 (40%) cases of normal oral epithelium, 1/30 (3.3%) cases of OL (one severely dysplastic case), and 4/21 (19%) cases of OSCC (two well-differentiated, one moderately differentiated, and one poorly differentiated case). Therefore, no statistically significant correlation among OSCC, OL, and normal tissue specimens was established. CONCLUSION: The endothelial presence of SOX2 both in oral potentially malignant and malignant lesions suggests that SOX2 may be implicated in the microvascularization process and associated with the degree of dysplasia in OL. The expression of CD147 may be attributed both to local inflammation and tumorigenesis. The implementation of CD147 in larger groups of tissue samples will shed some light on its role in cancer and inflammation. The evidence so far supports the need for more studies, which may support the clinical significance of these novel cancer stem cell biomarkers.

13.
Vet Comp Oncol ; 22(2): 204-216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38378135

RESUMO

Comparative cancer studies help us determine if discoveries in one species apply to another. Feline and human oral squamous cell carcinoma (FOSCC and HOSCC) are invasive tumours in which inflammation and abnormal p16 expression are reported. Immunohistochemistry was used to determine the expression of p16 and microsomal prostaglandin E2 synthase 1 (mPGES1) in 42 HOSCC and 45 FOSCC samples with known expression of cyclooxygenase 2 (COX2) and cluster of differentiation 147 (CD147). High p16 expression was more common in HOSCC tumour cells compared to adjacent stroma and oral epithelium (p < .05), with a similar but statistically nonsignificant pattern in FOSCC. Interestingly, high mPGES1 expression in FOSCC was more common in the adjacent epithelium compared to the other compartments (p < .05). In HOSCC, mPGES1 was more similar between compartments but was numerically more common in the tumour compartment (p > .05). There were nominal (p > 0.05) differences in marker expression between high and low mPGES1 expressing tumours in both species, including high p16 observed more commonly in high mPGES1 tumours, and COX-2 positive tumours being more common in low mPGES1 tumours. High CD147 HOSCC tumours were more common in the high mPGES1 HOSCC group (p < .05). In the FOSCC cohort, where there was no statistical difference in CD147 expression between high and low mPGES1 tumours, there were numerically higher CD147 cases in the high mPGES1group. Different expression patterns in FOSCC and HOSCC could be related to different risk factors. For example, p16 is a marker of papillomavirus-driven HOSCC, but a causal relationship between papillomaviruses and FOSCC has yet to be definitively demonstrated. The significance of high P16 expression in the absence of papillomavirus infection deserves further study, and the relative contributions of COX2 and mPGES1 to tumour inflammation and progression should be explored. The findings reveal potential similarities in FOSCC and HOSCC biology, while also demonstrating differences that may relate to risk factors and pathogenesis that are unique to each species.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Bucais , Prostaglandina-E Sintases , Gatos , Doenças do Gato/metabolismo , Doenças do Gato/patologia , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/genética , Animais , Neoplasias Bucais/veterinária , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/veterinária , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
14.
Allergol Immunopathol (Madr) ; 52(1): 71-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38186196

RESUMO

BACKGROUND: Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized. METHODS: Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFß1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo. RESULTS: CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFß1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo. CONCLUSION: SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFß and notch pathways.


Assuntos
Melanoma , Humanos , Células-Tronco , Movimento Celular
15.
Respir Res ; 25(1): 6, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178133

RESUMO

BACKGROUND: Airway remodeling is a poorly reversible feature of asthma which lacks effective therapeutic interventions. CD147 can regulate extracellular matrix (ECM) remodeling and tissue fibrosis, and participate in the pathogenesis of asthma. In this study, the role of CD147 in airway remodeling and activation of circulating fibrocytes was investigated in asthmatic mice. METHODS: Asthmatic mouse model was established by sensitizing and challenging mice with ovalbumin (OVA), and treated with anti-CD147 or Isotype antibody. The number of eosinophils in bronchoalveolar lavage fluid (BALF) was examined by microscope, and the levels of interleukin-4 (IL-4), IL-5 and IL-13 in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The number of CD45+ and collagen I (COL-I)+ circulating fibrocytes in BALF was detected by flow cytometry. Lung tissue sections were respectively stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS) or Masson trichrome staining, or used for immunohistochemistry of CD31 and immunohistofluorescence of α-smooth muscle actin (α-SMA), CD45 and COL-I. The protein expression of α-SMA, vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), Fibronectin, and COL-I was determined by western blotting. RESULTS: Anti-CD147 treatment significantly reduced the number of eosinophils and the levels of IL-4, IL-13, and IL-5 in BALF, and repressed airway inflammatory infiltration and airway wall thickening in asthmatic mice. Anti-CD147 treatment also reduced airway goblet cell metaplasia, collagen deposition, and angiogenesis in asthmatic mice, accompanied by inhibition of VEGF and α-SMA expression. The number of CD45+COL-I+ circulating fibrocytes was increased in BALF and lung tissues of OVA-induced asthmatic mice, but was decreased by anti-CD147 treatment. In addition, anti-CD147 treatment also reduced the protein expression of COL-I, fibronectin, and TGF-ß1 in lung tissues of asthmatic mice. CONCLUSION: OVA-triggered airway inflammation and airway remodeling in asthmatic mice can be repressed by anti-CD147 treatment, along with inhibiting the accumulation and activation of circulating fibrocytes.


Assuntos
Asma , Basigina , Animais , Camundongos , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Colágeno Tipo I , Fibronectinas , Interleucina-13 , Interleucina-4 , Interleucina-5 , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular
16.
Expert Opin Ther Targets ; 28(1-2): 83-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235574

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological tumor, but it currently lacks effective therapeutic targets. CD147, which is overexpressed in OC, plays a crucial role in promoting malignant progression and is associated with poor prognosis in patients. Therefore, CD147 has been identified as a potential therapeutic target. However, there is a limited amount of research on the development of CD147 inhibitors. METHODS: Surface plasmon resonance (SPR) assay and virtual molecular docking analysis were performed to identify potential natural compounds targeting CD147. The anti­tumor effects of myricetin were evaluated using various assays, including CCK8, Alkaline comet, immunofluorescence and xenograft mouse models. The underlying mechanism was investigated through western blot analysis and lentivirus short hairpin RNA (LV-shRNA) transfection. RESULTS: Myricetin, a flavonoid commonly found in plants, was discovered to be a potent inhibitor of CD147. Our findings demonstrated that myricetin exhibited a strong affinity for CD147 and down-regulated the protein level of CD147 by facilitating its proteasome-dependent degradation. Additionally, we observed synergistic antitumor effects of myricetin and cisplatin both in vivo and in vitro. Mechanistically, myricetin suppressed the expression of FOXM1 and its downstream DNA damage response (DDR) genes E×O1and BRIP1, thereby enhancing the DDR induced by cisplatin. CONCLUSION: Our data demonstrate that myricetin, a natural inhibitor of CD147, may have clinical utility in the treatment of OC due to its ability to increase genomic toxicity when combined with cisplatin.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Basigina/genética , Proliferação de Células
17.
Int J Surg Pathol ; : 10668969241226711, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291659

RESUMO

OBJECTIVES: Emmprin (CD147/BSG) protein is estimated to play a key role in cell migration and chemoresistance in viral carcinogenesis. However, there are very limited studies investigating the CD147 in the oncogenesis of Kaposi's sarcoma-associated herpesvirus. This study aims to reveal the relationship between CD147 expression with histopathological parameters, disease pattern, and recurrence in Kaposi's sarcoma (KS). METHODS: The study included 67 patients diagnosed with KS between January 1982 and September 2023. Clinical and histopathological features were analyzed retrospectively. HHV-8, CD31, and CD147 expressions were evaluated by immunohistochemistry. RESULTS: Sixteen (24%) female and 51 (76%) male patients with median age of 64 (10-86) were included in the study. CD147 was positive in 57 (85%) cases and associated with nodular pattern (P = .001), presence of solid/fibrosarcomatous area (P = .005), and high mitotic activity (P = .035). The disease relapsed in 17 (27%) of the 63 patients with median 2 (0-12) years follow-up. While a 5-year relapse-free survival was 48.5% in the CD147 diffuse positive group, it was 83.4% in focal positive and 100% in negative cases (P = .029). CONCLUSION: Our study exhibited the relationship between CD147 overexpression and recurrence in KS, but the inhomogeneity of the treatment groups and the small number of patients should also be considered. These findings may provide insight into the pathogenesis of KS and the development of targeted therapies in the future.

18.
Environ Sci Pollut Res Int ; 31(6): 8768-8780, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180673

RESUMO

Particulate matter (PM) has been reported to be one of the risk factor for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, although the ocular surface is deeply affected by both PM exposure and SARS-COV-2 infection, no studies have investigated the effects of PM exposure on the ocular route of SARS-COV-2 infection. To this end, we explored the effects of PM on the expression of SARS-COV-2-associated receptors and proteins in ocular surface. Herein, short- and long-term PM-exposed rat models were established by topically administering PM for 3 and 10 days, respectively. Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to PM. ACE2, TMPRSS2, CD147, and ADAM17 expression levels were measured by western blot analysis. Our results show that short-term PM exposure had little effect on the expressions of ACE2, TMPRSS2, and CD147 in ocular surface tissues. However, long-term PM exposure decreased the ACE2 expression in conjunctival tissues and increased the CD147 expression in corneal or conjunctival tissues. PM exposure reduced the ACE2 expression by increasing the ADAM17 expression and ACE2 shedding level in HCECs and HCjECs. Our findings suggest that long-term PM exposure down-regulate the expression of the SARS-CoV-2 receptor ACE2 in conjunctival tissues through ADAM17-dependent ACE2 shedding. However, long-term PM exposure up-regulates the expression of another SARS-CoV-2 receptor CD147 in ocular surface tissues, accompanied by ocular surface damage and cytotoxicity. This study provides a new insight into uncovering potential risk factors for infection with SARS-CoV-2 via the ocular route.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ratos , Animais , COVID-19/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Material Particulado/metabolismo , Túnica Conjuntiva/metabolismo
19.
Viruses ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257782

RESUMO

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.


Assuntos
Megacariócitos , Fenóis , Reserpina , SARS-CoV-2 , Humanos , COVID-19 , Megacariócitos/virologia , Fenóis/farmacologia , Síndrome de COVID-19 Pós-Aguda , Reserpina/análogos & derivados , Reserpina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
20.
Allergol. immunopatol ; 52(1): 72-78, 01 jan. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-229177

RESUMO

Background: Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized. Methods: Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFβ1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo. Results: CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFβ1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo. Conclusion: SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFβ and notch pathways (AU)


Assuntos
Humanos , Células-Tronco Neoplásicas/imunologia , Melanoma/imunologia , Basigina/imunologia , Transdução de Sinais , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...